


Daily Tutorial Sheet-1	JEE Advanced (Archive)
------------------------	------------------------

- 1. Melting point, Boiling point, Solubility, conductivity in aq. solution
 - (i) Melting points Ionic compounds have higher melting points than covalent compounds.
 - **Boiling points** Ionic compounds have higher boiling points than covalent compounds.
 - (iii) Solubility Ionic compounds have greater solubility in water than a covalent compound.
 - **(iv)** Conductivity in aqueous solution Ionic compounds have greater electrical conductivity in aqueous solution while covalent compounds are usually non-conducting.
- **2.(ABC)** The bonding between cation and anion is ionic while carbon and nitrogen are covalently bonded in cyanide ion as:

- **3.(A)** Strongly electropositive, univalent X will form an 1:1 ionic compound with strongly electronegative, univalent Y. $X+Y \longrightarrow X^+Y^-$
- **4.(AB)** SiO_2 and S_8 are covalent molecules with a sigma covalent bond between Si and S and S atoms.
- **5.(C)** For non-polar MX_3 , it must have triangular planar arrangement, i.e. there should be sp^2 hybridisation around M.
- 6.(HCOOH and CH_3COOH)

O O H H - C - OH and
$$\mathrm{CH_3}$$
 - C - OH . Both are capable of forming H-bonds.

- **7.** CO_2 , it is 180° .
- **8.(sp³)** sp³-hybrid orbital holding the lone pair is involved in formation of ammonium ion.
- **9.(A)** CO has a total of 14 electrons and CN⁻ also has 14 electrons.

$$C(6e^{-}) + N(7e^{-}) + e^{-} \longrightarrow CN^{-}(14e^{-})$$

- **10.(A)** CO_2 is a linear molecule because of sp-hybridisation around carbon atom.
- **11.(2)** These are 2π bonds in a nitrogen molecule
- **12.(D)** HCl does not form hydrogen bond. For formation of hydrogen bond, atleast one hydrogen atom be bonded to one of the three most electronegative atom O, N and F.
- 13. (Based on octet completion)

(ii)
$$CO_3^{2-}:\begin{bmatrix} \vdots O \vdots \\ \vdots C \end{bmatrix}^{2-}$$
 and $F \cdot B \cdot \cdot (BF_3)$

(iii)
$$CN^-: \begin{bmatrix} : C & : & i \\ : & : & i \end{bmatrix}$$
 and $C : : O$: (CO)

(iv)
$$NCS^{-}: \begin{bmatrix} \vdots S \cdots C & \vdots N \end{bmatrix}^{-} \text{ and } \vdots C! \cdots C & \vdots N \text{ (CICN)}$$

 $\textbf{14.(B)} \quad \mathbf{CCl_4} \text{ has a regular tetrahedral shape}.$

15.(T) Linear overlapping of p-orbitals form sigma bond while sidewise overlapping of two p-orbitals forms a pi bond.

Solution | workbook-1 34 Chemical Bonding - I & II